Overview

- Transparent IPsec is when HW provides a full IPsec data-path implementation:
 - ESP crypto, encap/decap, replay protection, sequence number generation, counters, notifications.

- There are two major use-cases:
 - Virtualization
 - Native Host
Full IPsec Offload - Virtualization
Virtualization

- The hypervisor xfrm layer is used to provide IPsec transparently for paravirtualized VMs

- Full offload could provide transparent IPsec for SRIOV VMs
 - The hypervisor (or Dom0) configures transparent IPsec for VMs
In-Host Network Topology

- Arch covers both cases of directly attached (VF) and Paravirt (PV) VMs
- To support the design we use VF representors
- Representor ports are a netdev modeling of eSwitch ports
- The VF representor netdev supports the following operations
 • Set IPsec Policy
 • Set IPsec SA
- The hypervisor could provide a software-fallback using the VF representor
- Packet sent on VF representor -> Packet received on VM VF NIC
- Packet sent on VM VF NIC -> Packet received on VF representor (except offload)
User Interface

XFRM netlink:

- Add the full offload option for XFRM_MSG_NEWPOLICY
 - Calls the netdev for new policy (works with representors too)
 - For representors:
 - Called before VM is created
 - Guarantee that the ACQUIRE packet will reach the XFRM stack on the hypervisor

- Add the full offload option for XFRM_MSG_UPDSA
Implications

- XFRM is used for the control plane and for software fallback
 - Most traffic bypasses the XFRM stack

- SA selector and policy checks are done in HW
 - Drop and count in HW on mismatch

- Soft/Hard limit events for Packets/Bytes must be generated by HW and propagated to XFRM
 - HW may not support both packet and byte limits
 - The hypervisor could provide the time limit, and check HW counters periodically to see if the SA is unused

- All statistics are provided by HW

- Auditable events will be provided to the hypervisor
 - Assisted by HW when necessary

- Limited configuration of replay protection, packet/byte limits
 - How to expose what is supported?
Exceptions

- **Fragmentation (egress):**
 - Transport mode SA needs to send an IP fragment – drop
 - Avoided by configuring tunnel mode SA when fragmentation is possible
 - Packet is bigger than MTU after adding all IPsec overhead – drop
 - Avoided by setting the MTU correctly

- **Fragmentation (ingress):**
 - All incoming IP fragments will be passed to the hypervisor’s network stack for reassembly. Then handle in software fallback.

- **Software fallback must update esn and replay protection atomically**
 - Software could stop offload, dump HW state, and handle the packet
 - HW could provide an atomic replay protection test_and_set (need to query ESN as well)

Note: It is possible to drop all exception packets in HW
Full IPsec Offload - Native
Native

- Not necessary to offload the policy check

Egress

- Packets must update the state in HW (even when rerouting or when using a bond)
- offload encap - skip most xfrm code
 - The network stack must see all headers, right?
 - Pass the headers through the network stack and remove them in the driver?

Ingress

- HW decapsulates ESP and checks replay
- Packets using a fully offloaded SA must come from the HW offload interface
 - Drop packets from other interfaces
- Driver would set the sec_path
XFRM netdevice:
- Add the full offload option for VTI/XFRMI
Limitations

- Packets **must** go through the offloading NIC in both egress and ingress
 - No bonding
 - No rerouting

- Received IP fragments are either dropped or trigger a software fallback

- Software fallback must update replay protection atomically (same as in virtualization)
 - Software could stop offload, dump HW state, and handle the packet
 or
 - HW could provide an atomic replay protection `test_and_set`

- Limited configuration of replay protection, packet/byte limits